Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(1): ar7, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910203

RESUMO

Lamins are nuclear intermediate filament proteins that are ubiquitously found in metazoan cells, where they contribute to nuclear morphology, stability, and gene expression. Lamin-like sequences have recently been identified in distantly related eukaryotes, but it remains unclear whether these proteins share conserved functions with the lamins found in metazoans. Here, we investigate conserved features between metazoan and amoebozoan lamins using a genetic complementation system to express the Dictyostelium discoideum lamin-like protein NE81 in mammalian cells lacking either specific lamins or all endogenous lamins. We report that NE81 localizes to the nucleus in cells lacking Lamin A/C, and that NE81 expression improves nuclear circularity, reduces nuclear deformability, and prevents nuclear envelope rupture in these cells. However, NE81 did not completely rescue loss of Lamin A/C, and was unable to restore normal distribution of metazoan lamin interactors, such as emerin and nuclear pore complexes, which are frequently displaced in Lamin A/C deficient cells. Collectively, our results indicate that the ability of lamins to modulate the morphology and mechanical properties of nuclei may have been a feature present in the common ancestor of Dictyostelium and animals, whereas other, more specialized interactions may have evolved more recently in metazoan lineages.


Assuntos
Dictyostelium , Lamina Tipo A , Proteínas de Protozoários , Animais , Camundongos , Núcleo Celular/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/metabolismo , Laminas/metabolismo , Mamíferos/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37398420

RESUMO

Lamins are nuclear intermediate filament proteins that are ubiquitously found in metazoan cells, where they contribute to nuclear morphology, stability, and gene expression. Lamin-like sequences have recently been identified in distantly related eukaryotes, but it remains unclear if these proteins share conserved functions with the lamins found in metazoans. Here, we investigate conserved features between metazoan and amoebozoan lamins using a genetic complementation system to express the Dictyostelium discoideum lamin-like protein NE81 in mammalian cells lacking either specific lamins or all endogenous lamins. We report that NE81 localizes to the nucleus in cells lacking Lamin A/C, and that NE81 expression improves nuclear circularity, reduces nuclear deformability, and prevents nuclear envelope rupture in these cells. However, NE81 did not completely rescue loss of Lamin A/C, and was unable to restore normal distribution of metazoan lamin interactors, such as emerin and nuclear pore complexes, which are frequently displaced in Lamin A/C deficient cells. Collectively, our results indicate that the ability of lamins to modulate the morphology and mechanical properties of nuclei may have been a feature present in the common ancestor of Dictyostelium and animals, whereas other, more specialized interactions may have evolved more recently in metazoan lineages.

3.
Cells ; 12(10)2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37408214

RESUMO

The Amoebozoan Dictyostelium discoideum exhibits a semi-closed mitosis in which the nuclear membranes remain intact but become permeabilized to allow tubulin and spindle assembly factors to access the nuclear interior. Previous work indicated that this is accomplished at least by partial disassembly of nuclear pore complexes (NPCs). Further contributions by the insertion process of the duplicating, formerly cytosolic, centrosome into the nuclear envelope and nuclear envelope fenestrations forming around the central spindle during karyokinesis were discussed. We studied the behavior of several Dictyostelium nuclear envelope, centrosomal, and nuclear pore complex (NPC) components tagged with fluorescence markers together with a nuclear permeabilization marker (NLS-TdTomato) by live-cell imaging. We could show that permeabilization of the nuclear envelope during mitosis occurs in synchrony with centrosome insertion into the nuclear envelope and partial disassembly of nuclear pore complexes. Furthermore, centrosome duplication takes place after its insertion into the nuclear envelope and after initiation of permeabilization. Restoration of nuclear envelope integrity usually occurs long after re-assembly of NPCs and cytokinesis has taken place and is accompanied by a concentration of endosomal sorting complex required for transport (ESCRT) components at both sites of nuclear envelope fenestration (centrosome and central spindle).


Assuntos
Amoeba , Dictyostelium , Membrana Nuclear , Mitose , Núcleo Celular
4.
Nucleus ; 13(1): 144-154, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35298348

RESUMO

Dictyostelium amoebae perform a semi-closed mitosis, in which the nuclear envelope is fenestrated at the insertion sites of the mitotic centrosomes and around the central spindle during karyokinesis. During late telophase the centrosome relocates to the cytoplasmic side of the nucleus, the central spindle disassembles and the nuclear fenestrae become closed. Our data indicate that Dictyostelium spastin (DdSpastin) is a microtubule-binding and severing type I membrane protein that plays a role in this process. Its mitotic localization is in agreement with a requirement for the removal of microtubules that would hinder closure of the fenestrae. Furthermore, DdSpastin interacts with the HeH/ LEM-family protein Src1 in BioID analyses as well as the inner nuclear membrane protein Sun1, and shows subcellular co-localizations with Src1, Sun1, the ESCRT component CHMP7 and the IST1-like protein filactin, suggesting that the principal pathway of mitotic nuclear envelope remodeling is conserved between animals and Dictyostelium amoebae.


Assuntos
Dictyostelium , Membrana Nuclear , Animais , Divisão do Núcleo Celular , Dictyostelium/metabolismo , Mitose , Membrana Nuclear/metabolismo , Espastina/metabolismo
5.
Cells ; 10(10)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34685637

RESUMO

The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating γ-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.


Assuntos
Centrossomo/metabolismo , Dictyostelium/metabolismo , Núcleo Celular/metabolismo , Centrossomo/ultraestrutura , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
6.
Cells ; 10(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572033

RESUMO

The Dictyostelium centrosome is a nucleus-associated body with a diameter of approx. 500 nm. It contains no centrioles but consists of a cylindrical layered core structure surrounded by a microtubule-nucleating corona. At the onset of mitosis, the corona disassembles and the core structure duplicates through growth, splitting, and reorganization of the outer core layers. During the last decades our research group has characterized the majority of the 42 known centrosomal proteins. In this work we focus on the conserved, previously uncharacterized Cep192 protein. We use superresolution expansion microscopy (ExM) to show that Cep192 is a component of the outer core layers. Furthermore, ExM with centrosomal marker proteins nicely mirrored all ultrastructurally known centrosomal substructures. Furthermore, we improved the proximity-dependent biotin identification assay (BioID) by adapting the biotinylase BioID2 for expression in Dictyostelium and applying a knock-in strategy for the expression of BioID2-tagged centrosomal fusion proteins. Thus, we were able to identify various centrosomal Cep192 interaction partners, including CDK5RAP2, which was previously allocated to the inner corona structure, and several core components. Studies employing overexpression of GFP-Cep192 as well as depletion of endogenous Cep192 revealed that Cep192 is a key protein for the recruitment of corona components during centrosome biogenesis and is required to maintain a stable corona structure.


Assuntos
Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Mitose , Proteínas de Protozoários/metabolismo , Proteínas Cromossômicas não Histona/genética , Dictyostelium/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Fuso Acromático
7.
Cells ; 9(8)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759812

RESUMO

We expressed Dictyostelium lamin (NE81) lacking both a functional nuclear localization signal and a CAAX-box for C-terminal lipid modification. This lamin mutant assembled into supramolecular, three-dimensional clusters in the cytosol that disassembled at the onset of mitosis and re-assembled in late telophase, thus mimicking the behavior of the endogenous protein. As disassembly is regulated by CDK1-mediated phosphorylation at serine 122, we generated a phosphomimetic S122E mutant called GFP-NE81-S122E-ΔNLSΔCLIM. Surprisingly, during imaging, the fusion protein assembled into cytosolic clusters, similar to the protein lacking the phosphomimetic mutation. Clusters disassembled again in the darkness. Assembly could be induced with blue but not green or near ultraviolet light, and it was independent of the fusion tag. Assembly similarly occurred upon cell flattening. Earlier reports and own observations suggested that both blue light and cell flattening could result in a decrease of intracellular pH. Indeed, keeping the cells at low pH also reversibly induced cluster formation. Our results indicate that lamin assembly can be induced by various stress factors and that these are transduced via intracellular acidification. Although these effects have been shown in a phosphomimetic CDK1 mutant of the Dictyostelium lamin, they are likely relevant also for wild-type lamin.


Assuntos
Dictyostelium/metabolismo , Laminas/metabolismo , Proteínas de Protozoários/metabolismo , Citosol/metabolismo , Dictyostelium/citologia , Dictyostelium/genética , Concentração de Íons de Hidrogênio , Laminas/genética , Luz , Mutação , Fosforilação/genética , Multimerização Proteica , Proteínas de Protozoários/genética , Estresse Mecânico
8.
Methods Protoc ; 3(3)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630359

RESUMO

We share two simple modifications to enhance the fixation and imaging of relatively small, motile, and rounded model cells. These include cell centrifugation and the addition of trace amounts of glutaraldehyde to existing fixation methods. Though they need to be carefully considered in each context, they have been useful to our studies of the spatial relationships of the microtubule cytoskeletal system.

9.
Int J Dev Biol ; 63(8-9-10): 509-519, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840788

RESUMO

The nuclear envelope consists of the outer and the inner nuclear membrane, the nuclear lamina and the nuclear pore complexes, which regulate nuclear import and export. The major constituent of the nuclear lamina of Dictyostelium is the lamin NE81. It can form filaments like B-type lamins and it interacts with Sun1, as well as with the LEM/HeH-family protein Src1. Sun1 and Src1 are nuclear envelope transmembrane proteins involved in the centrosome-nucleus connection and nuclear envelope stability at the nucleolar regions, respectively. In conjunction with a KASH-domain protein, Sun1 usually forms a so-called LINC complex. Two proteins with functions reminiscent of KASH-domain proteins at the outer nuclear membrane of Dictyostelium are known; interaptin which serves as an actin connector and the kinesin Kif9 which plays a role in the microtubule-centrosome connector. However, both of these lack the conserved KASH-domain. The link of the centrosome to the nuclear envelope is essential for the insertion of the centrosome into the nuclear envelope and the appropriate spindle formation. Moreover, centrosome insertion is involved in permeabilization of the mitotic nucleus, which ensures access of tubulin dimers and spindle assembly factors. Our recent progress in identifying key molecular players at the nuclear envelope of Dictyostelium promises further insights into the mechanisms of nuclear envelope dynamics.


Assuntos
Núcleo Celular/metabolismo , Dictyostelium/fisiologia , Membrana Nuclear/metabolismo , Centrômero/metabolismo , Centrossomo/metabolismo , Citoesqueleto/metabolismo , Dictyostelium/genética , Cinesinas/metabolismo , Laminas/metabolismo , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Mitose , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Domínios Proteicos , Multimerização Proteica , Tubulina (Proteína)/química , Quinases da Família src/metabolismo
10.
Biochemistry ; 58(13): 1786-1798, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817134

RESUMO

The deficiency of the molybdenum cofactor (Moco) is an autosomal recessive disease, which leads to the loss of activity of all molybdoenzymes in humans with sulfite oxidase being the essential protein. Moco deficiency generally results in death in early childhood. Moco is a sulfur-containing cofactor synthesized in the cytosol with the sulfur being provided by a sulfur relay system composed of the l-cysteine desulfurase NFS1, MOCS3, and MOCS2A. Human MOCS3 is a dual-function protein that was shown to play an important role in Moco biosynthesis and in the mcm5s2U thio modifications of nucleosides in cytosolic tRNAs for Lys, Gln, and Glu. In this study, we constructed a homozygous MOCS3 knockout in HEK293T cells using the CRISPR/Cas9 system. The effects caused by the absence of MOCS3 were analyzed in detail. We show that sulfite oxidase activity was almost completely abolished, on the basis of the absence of Moco in these cells. In addition, mcm5s2U thio-modified tRNAs were not detectable. Because the l-cysteine desulfurase NFS1 was shown to act as a sulfur donor for MOCS3 in the cytosol, we additionally investigated the impact of a MOCS3 knockout on the cellular localization of NFS1. By different methods, we identified a MOCS3-independent novel localization of NFS1 at the centrosome.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Centrossomo/metabolismo , Nucleotidiltransferases/metabolismo , Sulfurtransferases/metabolismo , Aconitato Hidratase/metabolismo , Sistemas CRISPR-Cas , Liases de Carbono-Enxofre/análise , Centrossomo/ultraestrutura , Coenzimas/metabolismo , Células HEK293 , Células HeLa , Humanos , Isocitrato Desidrogenase/metabolismo , Metaloproteínas/metabolismo , Cofatores de Molibdênio , Nucleotidiltransferases/análise , Nucleotidiltransferases/genética , Pteridinas/metabolismo , RNA de Transferência/metabolismo , Sulfito Oxidase/metabolismo , Sulfurtransferases/análise , Sulfurtransferases/genética
11.
Cells ; 8(2)2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781468

RESUMO

Nuclear lamins are nucleus-specific intermediate filaments (IF) found at the inner nuclear membrane (INM) of the nuclear envelope (NE). Together with nuclear envelope transmembrane proteins, they form the nuclear lamina and are crucial for gene regulation and mechanical robustness of the nucleus and the whole cell. Recently, we characterized Dictyostelium NE81 as an evolutionarily conserved lamin-like protein, both on the sequence and functional level. Here, we show on the structural level that the Dictyostelium NE81 is also capable of assembling into filaments, just as metazoan lamin filament assemblies. Using field-emission scanning electron microscopy, we show that NE81 expressed in Xenopous oocytes forms filamentous structures with an overall appearance highly reminiscent of Xenopus lamin B2. The in vitro assembly properties of recombinant His-tagged NE81 purified from Dictyostelium extracts are very similar to those of metazoan lamins. Super-resolution stimulated emission depletion (STED) and expansion microscopy (ExM), as well as transmission electron microscopy of negatively stained purified NE81, demonstrated its capability of forming filamentous structures under low-ionic-strength conditions. These results recommend Dictyostelium as a non-mammalian model organism with a well-characterized nuclear envelope involving all relevant protein components known in animal cells.


Assuntos
Dictyostelium/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Animais , Permeabilidade da Membrana Celular , Dictyostelium/ultraestrutura , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Oócitos/metabolismo , Oócitos/ultraestrutura , Xenopus
12.
Cells ; 7(11)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413081

RESUMO

The centrosome is not only the largest and most sophisticated protein complex within a eukaryotic cell, in the light of evolution, it is also one of its most ancient organelles. This special issue of "Cells" features representatives of three main, structurally divergent centrosome types, i.e., centriole-containing centrosomes, yeast spindle pole bodies (SPBs), and amoebozoan nucleus-associated bodies (NABs). Here, I discuss their evolution and their key-functions in microtubule organization, mitosis, and cytokinesis. Furthermore, I provide a brief history of centrosome research and highlight recently emerged topics, such as the role of centrioles in ciliogenesis, the relationship of centrosomes and centriolar satellites, the integration of centrosomal structures into the nuclear envelope and the involvement of centrosomal components in non-centrosomal microtubule organization.

13.
Cells ; 7(4)2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690637

RESUMO

Dictyostelium centrosomes consist of a nucleus-associated cylindrical, three-layered core structure surrounded by a corona consisting of microtubule-nucleation complexes embedded in a scaffold of large coiled-coil proteins. One of them is the conserved CDK5RAP2 protein. Here we focus on the role of Dictyostelium CDK5RAP2 for maintenance of centrosome integrity, its interaction partners and its dynamic behavior during interphase and mitosis. GFP-CDK5RAP2 is present at the centrosome during the entire cell cycle except from a short period during prophase, correlating with the normal dissociation of the corona at this stage. RNAi depletion of CDK5RAP2 results in complete disorganization of centrosomes and microtubules suggesting that CDK5RAP2 is required for organization of the corona and its association to the core structure. This is in line with the observation that overexpressed GFP-CDK5RAP2 elicited supernumerary cytosolic MTOCs. The phenotype of CDK5RAP2 depletion was very reminiscent of that observed upon depletion of CP148, another scaffolding protein of the corona. BioID interaction assays revealed an interaction of CDK5RAP2 not only with the corona markers CP148, γ-tubulin, and CP248, but also with the core components Cep192, CP75, and CP91. Furthermore, protein localization studies in both depletion strains revealed that CP148 and CDK5RAP2 cooperate in corona organization.

14.
Polymers (Basel) ; 10(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30961090

RESUMO

This article describes the synthesis of anionic polymer brushes and their mineralization with calcium phosphate. The brushes are based on poly(3-sulfopropyl methacrylate potassium salt) providing a highly charged polymer brush surface. Homogeneous brushes with reproducible thicknesses are obtained via surface-initiated atom transfer radical polymerization. Mineralization with doubly concentrated simulated body fluid yields polymer/inorganic hybrid films containing AB-Type carbonated hydroxyapatite (CHAP), a material resembling the inorganic component of bone. Moreover, growth experiments using Dictyostelium discoideum amoebae demonstrate that the mineral-free and the mineral-containing polymer brushes have a good biocompatibility suggesting their use as biocompatible surfaces in implantology or related fields.

15.
Eur J Cell Biol ; 96(2): 119-130, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28104305

RESUMO

The acentriolar Dictyostelium centrosome is a nucleus-associated body consisting of a core structure with three plaque-like layers, which are surrounded by a microtubule-nucleating corona. The core duplicates once per cell cycle at the G2/M transition, whereby its central layer disappears and the two outer layers form the mitotic spindle poles. Through proteomic analysis of isolated centrosomes, we have identified CP39 and CP75, two essential components of the core structure. Both proteins can be assigned to the central core layer as their centrosomal presence is correlated to the disappearance and reappearance of the central core layer in the course of centrosome duplication. Both proteins contain domains with centrosome-binding activity in their N- and C-terminal halves, whereby the respective N-terminal half is required for cell cycle-dependent regulation. CP39 is capable of self-interaction and GFP-CP39 overexpression elicited supernumerary microtubule-organizing centers and pre-centrosomal cytosolic clusters. Underexpression stopped cell growth and reversed the MTOC amplification phenotype. In contrast, in case of CP75 underexpression of the protein by RNAi treatment elicited supernumerary MTOCs. In addition, CP75RNAi affects correct chromosome segregation and causes co-depletion of CP39 and CP91, another central core layer component. CP39 and CP75 interact with each other directly in a yeast two-hybrid assay. Furthermore, CP39, CP75 and CP91 mutually interact in a proximity-dependent biotin identification (BioID) assay. Our data indicate that these three proteins are all required for proper centrosome biogenesis and make up the major structural components of core structure's central layer.


Assuntos
Centrossomo/metabolismo , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Dictyostelium/citologia , Mitose/fisiologia
16.
Elife ; 52016 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-27495975

RESUMO

Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.


Assuntos
Homozigoto , Metaloendopeptidases/genética , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Mutação de Sentido Incorreto , Atrofia Óptica/genética , ATPases Associadas a Diversas Atividades Celulares , Feminino , Humanos , Masculino , Proteínas Mitocondriais
17.
Eur J Cell Biol ; 95(3-5): 124-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27005924

RESUMO

The Dictyostelium centrosome is a model for acentriolar centrosomes and it consists of a three-layered core structure surrounded by a corona harboring microtubule nucleation complexes. Its core structure duplicates once per cell cycle at the G2/M transition. Through proteomic analysis of isolated centrosomes we have identified CP91, a 91-kDa coiled coil protein that was localized at the centrosomal core structure. While GFP-CP91 showed almost no mobility in FRAP experiments during interphase, both GFP-CP91 and endogenous CP91 dissociated during mitosis and were absent from spindle poles from late prophase to anaphase. Since this behavior correlates with the disappearance of the central layer upon centrosome duplication, CP91 is a putative component of this layer. When expressed as GFP-fusions, CP91 fragments corresponding to the central coiled coil domain and the preceding N-terminal part (GFP-CP91cc and GFP-CP91N, respectively) also localized to the centrosome but did not show the mitotic redistribution of the full length protein suggesting a regulatory role of the C-terminal domain. Expression of all GFP-fusion proteins suppressed expression of endogenous CP91 and elicited supernumerary centrosomes. This was also very prominent upon depletion of CP91 by RNAi. Additionally, CP91-RNAi cells exhibited heavily increased ploidy due to severe defects in chromosome segregation along with increased cell size and defects in the abscission process during cytokinesis. Our results indicate that CP91 is a central centrosomal core component required for centrosomal integrity, proper centrosome biogenesis and, independently, for abscission during cytokinesis.


Assuntos
Centrossomo/química , Centrossomo/metabolismo , Dictyostelium/metabolismo , Proteínas de Protozoários/metabolismo
18.
Cells ; 5(1)2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26999214

RESUMO

The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src1(1-646), a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture.

19.
Methods Enzymol ; 569: 23-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26778551

RESUMO

The identification of a bona fide lamin-like protein in Dictyostelium made this lower eukaryote an attractive model organism to study evolutionarily conserved nuclear envelope (NE) proteins important for nuclear organization and human laminopathies. Proximity-dependent biotin identification (BioID), reported by Roux and colleagues, is a powerful discovery tool for lamin-associated proteins. In this method, living cells express a bait protein (e.g., lamin) fused to an R118G-mutated version of BirA, an Escherichia coli biotinylase. In the presence of biotin, BirA-R118G biotinylates target proteins in close proximity in vivo, which are purified using streptavidin and identified by immunoblotting or mass spectrometry. We adapted the BioID method for use in Dictyostelium amoebae. The protocols described here successfully revealed Dictyostelium lamin-like protein NE81 proximity to Sun1, a conserved inner nuclear membrane protein.


Assuntos
Dictyostelium/metabolismo , Laminas/fisiologia , Proteínas Nucleares/fisiologia , Mapeamento de Interação de Proteínas , Proteínas de Protozoários/fisiologia , Cultura Axênica , Biotina/metabolismo , Biotinilação , Núcleo Celular/metabolismo , Dictyostelium/citologia , Membrana Nuclear/metabolismo , Proteínas Nucleares/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Coloração e Rotulagem
20.
Eur J Cell Biol ; 94(6): 249-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25952183

RESUMO

The current eukaryotic tree of life groups most eukaryotes into one of five supergroups, the Opisthokonta, Amoebozoa, Archaeplastida, Excavata and SAR (Stramenopile, Alveolata, Rhizaria). Molecular and comparative morphological analyses revealed that the last eukaryotic common ancestor (LECA) already contained a rather sophisticated equipment of organelles including a mitochondrion, an endomembrane system, a nucleus with a lamina, a microtubule-organizing center (MTOC), and a flagellar apparatus. Recent studies of MTOCs, basal bodies/centrioles, and nuclear envelope organization of organisms in different supergroups have clarified our picture of how the nucleus and MTOCs co-evolved from LECA to extant eukaryotes. In this review we summarize these findings with special emphasis on valuable contributions of research on a lamin-like protein, nuclear envelope proteins, and the MTOC in the amoebozoan model organism Dictyostelium discoideum.


Assuntos
Amoeba/metabolismo , Evolução Biológica , Centrossomo/metabolismo , Dictyostelium/metabolismo , Lâmina Nuclear/metabolismo , Animais , Cromatina/metabolismo , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...